Thanks to our analog world, analog circuits remain vital components, even in our highly digitized society. Analog circuits span a wide variety of challenges and applications, ranging from analog front ends, amplifiers, filters, comparators, etc. Scaled CMOS technologies, with their reduced supply voltage and intrinsic gain, challenge such building blocks fundamentally. Also, the supply voltage of electronic systems is an analog quantity. More advanced power management circuits are emerging as power efficiency is critical to increasing battery life and enabling more powerful applications. The trend towards higher voltages, high power densities, higher conversion ratios, and a higher integration level is hugely apparent. MICAS is a strong player in these domains. We focus on innovative approaches and the use of standard CMOS and more innovative integration technologies.
While the nominal supply voltage of scaled CMOS technologies is continuously reducing, the voltage of the mains remains constant. On the contrary, the trend in energy storage is towards higher voltages. For example, electric cars are shifting from 400 V towards 800 V batteries. Additionally, capacitive storage profits quadratically from increasing the voltage (see figure). These trends necessitate power management circuits with increasing conversion ratios to efficiently and reliably step down the energy source's voltage. Inductive converters suffer from extremely low duty cycles for such high conversion ratios. On the contrary, capacitive converters can use a 50% duty cycle clock regardless of the conversion ratio. Additionally, capacitors can be integrated easily. Shifting to higher voltage remains a considerable challenge. Research at MICAS is exploring new possibilities in this domain.
Silicon-based bulk CMOS technologies have been the dominating platform for several decades. Although this is probably going to continue in the foreseeable future, some applications profit from other technologies. Recently, many technologies are emerging, for example, monolithic GaN technologies, TFT-based technologies, etc., which combine exciting properties with the integration aspect of traditional CMOS. This allows us to investigate the possibilities of fully integrated capacitive GaN power converters, TFT-based analog circuits, and more. The goal is to leverage our knowledge in CMOS and apply it to these more exotic technologies.
Integrated circuits are everywhere today. Sometimes, they are used in so-called extreme conditions: an extremely low or high temperature, a high vacuum, a high radiation environment, an environment with high electromagnetic interference, etc. Realizing proper operation under such extreme conditions requires deep insight into the mechanisms that play and innovative solutions to circumvent them. MICAS is actively involved in research on chips for automotive applications, space applications, high-energy physics, gravitational-wave detectors, etc.